Construction Accounting and
Financial Management
Chapter 17 Tools for Making Financial Decisions

Types of Alternatives

- Independent
- Does not preclude accepting another alternative
- Mutually exclusive
- Precludes accepting all other alternatives
- Contingent
- Must be selected with another alternative
- "Do nothing"

```
Pool of Possible Alternatives
- May be a single alternative or combination of
    alternative
- Must be mutually exclusive
| Must meet the desired objectives without
    going over budget
```


Sunk Costs

- Sunk costs are:
- Costs already incurred
- Costs that have been committed to be paid that cannot be canceled
- Sunk costs should not be used in decision making because the money has already been spent
\qquad
\qquad

Minimum Attractive Rate of Return
(MARR)

- Interest rate at which alternatives will be evaluated
- Should cover cost of capital and minimum acceptable profit

Study Period

- The period of time over which the alternatives will be studied
- All alternatives must have the same life span as the study period

```
Adjusting Live Spans
| Shorten by adding salvage value
- Lengthen by adding maintenance cost at end
    of life
    \square For example, upgrading a computer
- Repurchase alternative
    - May be done until all alternatives end at the same
        time
- Combination of above
```

Incremental Net Present Value - Alternatives compared in the differences in their cash flows

Incremental Net Present Value—Steps

- Step 4: if:
- If NPV is positive the next alternative becomes the "current best alternative"
- If NPV is zero or negative the "current best alternative" remains the "current best alternative"
- Step 5: Repeat Step 4 until all alternatives have been considered

Net Present Value (NPV) or Present Worth

- Determine present value (at beginning of the study period) for each alternative's cash flows
- Select alternative with largest NPV
- If:

NPV >0: Alternative has return > MARR
NPV =0: Alternative has return = MARR
NPV <0: Alternative has return < MARR
\qquad
\qquad

Incremental Net Present Value-Steps

- Step 1: Rank alternative based upon initial cost (low to high)
- Step 2: Alternative with lowest cost is "current best alternative"
- Step 3: Compare "current best alternative" with next alternative based upon net present value
\qquad
\qquad

Future Worth (FW)

- Determine future worth (at end of the study period) for each alternative's cash flows
- Select alternative with largest future worth
- If:

FW >0 : Alternative has return > MARR
FW $=0$: Alternative has return $=$ MARR
FW <0: Alternative has return < MARR

```
Future Worth (FW)
- Selects the same alternative as the net
    present value
- Future Worth = NPV (1 + MARR)}\mp@subsup{)}{}{\mathrm{ Years}
```

```
Annual Equivalent (AE)
- If:
    AE >0: Alternative has return > MARR
    AE=0: Alternative has return = MARR
    AE <0: Alternative has return < MARR
```

- Selects the same alternative as the net
present value and future worth
- $\mathrm{AE}=\mathrm{NPV}\left[i(1+i)^{n}\right] /\left[(1+i)^{n}-1\right]$
$-A E=F W\left[i(1+i)^{n}\right]\left[(1+i)^{n}-1\right]$

Rate of Return

- Interest rate that produces a NPV of zero
- Select alternative with largest rate of return
- If best rate of return is less than the MARR consider rejecting all alternative
- Selects the same alternative as the net
- $\mathrm{AE}=\mathrm{NPV}\left[i(1+i)^{n}\right] /\left[(1+i)^{n}-1\right]$
$-\mathrm{AE}=\mathrm{FW}\left[i(1+i)^{n}\right] /\left[(1+i)^{n}-1\right]$ \qquad

- Alternatives compared in the differences in their cash flows

Incremental Rate of Return-Steps

- Step 1: Rank alternative based upon initial cost (low to high)
- Step 2: Alternative with lowest cost is "current best alternative"
- Step 3: Compare "current best alternative" with next alternative based on rate of return

Incremental Net Present Value—Steps

- Step 4: if:
- If the rate of return in greater than the MARR the next alternative becomes the "current best alternative"
- If the rate of return is less than or equal to the MARR the "current best alternative" remains the "current best alternative"
- Step 5: Repeat Step 4 until all alternatives have been considered

Capital Recovery with Return

- Similar to annual equivalent except it only looks at capital costs
- Identifies how much revenue an alternative must generate to cover it capital cost with a return on investment
- Useful when trying to determine revenues

Payback Period without Interest

- How long does it take to recover initial costs?
- Ignores:
- Interest on the initial costs
- Salvage value
- If payback period without interest is longer than the life of the alternative, the alternative should be rejected
\qquad

Project Balance

- Show:
- Potential profit or loss at any time
- Future worth, which is related to NPV
- Show payback period with interest
- Useful for:
- Risky alternatives
- Comparing alternatives with similar NPVs

Payback Period with Interest

- How long does it take to recover initial costs plus interest?
- Includes interest on the capital investment
- Ignores the salvage value
- If payback period with interest is longer than the life of the alternative, the alternative should be rejected

Project Balance

