Construction Accounting and Financial Management

Chapter 16
Financing a Company's Financial
Needs

Simple Interest

- I = P(i)n
 - or -
- I = P(i)D/365

where

I = Interest

P = Principal

i = Interest rate per year

n = Number of years (may be a fraction)

D = Days

Compound Interest

i = r/c

where

i = Periodic interest rate (often monthly)

r = Nominal interest rate per year or annual percentage rate (APR)

c = Number of compounding periods in a year where $c \ge 1$

Compound Interest

i = (r/365)D

where

i = Periodic interest rate

r = Nominal interest rate per year or annual percentage rate (APR)

r/365 = Daily finance charge

D = Number of days

Often used for credit cards

Yield or Annual Percentage Yield (APY)

 $i_a = (1 + r/c)^c - 1$

where

 i_a = Yield

r = Nominal interest rate per year or annual percentage rate (APR)

c = Number of compounding periods in a year where $c \ge 1$

Interest Rate

- Fixed
 - $\hfill \square$ Remains the same throughout the loan
- Variable
 - Can change at specified times during the loan
 - Usually tied to an index

Payment on Long-Term Loans

$$A = P[i(1+i)^n]$$
[(1+i)^n-1]

where

A = Monthly payment (excludes taxes and insurance)

P = Principal

i = Periodic interest rate for one month (<math>r/12)

n = Duration of loan in months

Interest Paid Over the Life of the Loan

I = An - P

where

/ = Total Interest paid

A = Monthly payment

n = Duration of loan in months

P = Principal

Interest for Month t

 $I_t = U_{t-1}(i)$

where

 I_t = Interest for month t

 U_{t-1} = Outstanding principal at the end of month t-1 (the previous month)

t – I (the previous month)

i = Periodic interest rate for one month (r/12)

Outstanding Principal at the End of Month *t*

 $U_t = U_{t-1} + I_t - A$

where

 U_t = Outstanding principal at the end of month t

 U_{t-1} = Outstanding principal at the end of month t-1 (the previous month)

 I_t = Interest for month t

A = Monthly payment

Principal versus Interest Payment Amount Interest Principal Principal Time

Amortization Schedule Shows for each month: Outstanding principal Monthly interest Monthly payment APE 900% Tem: 360 Months Monthly Payment 51,206,93 Monthly Payment 51,206,93 Beginning Monthly Monthly Principal Payment Interest Reduction Principal Beginning Month Principal Payment Interest Reduction Principal 1 150,000,000 1,206,38 1,125,00 81,93 149,918,07 1 2 149,918,07 1,206,93 1,125,01 81,93 149,918,07 1 2 149,918,07 1,206,93 1,125,01 81,93 149,918,07 1 3 149,835,53 1,206,93 1,123,77 83,16 149,752,37 4 149,752,37 1,206,93 1,123,14 83,19 149,685,58

Effective Annual Interest Rate with Closing Costs

- Closing costs increase effective annual interest rate
- Step 1: Determine payment (P)
- Step 2: Determine closing costs
- Step 3: Solve the following equation for *i*:

$$\Box A = \underbrace{(P - Closing\ Costs)[i\ (1+i)^n]}_{[(1+i)^n-1]}$$

Effective Annual Interest Rate with Closing Costs and Early Payment

- Step 1: Determine payment (P)
- Step 2: Determine closing costs
- Step 3: Determine early payment
 Outstanding principal balance (U_i)
- Step 4: Solve for *i* using the following equation:

Step 4: Solve for *l* using the following
$$e$$

$$P = Closing Costs + A[(1 + i)^{l} - 1] + U_{l}$$

$$[i(1 + i)^{l}] \qquad (1 + i)^{l}$$

Interest on Short-Term Loans

i = [P/(P - I)] - 1

where

i = Periodic interest rate (period = life of loan)

P = Principal

I = Total interest paid

Interest on Short-Term Loans

 $i_a = (1 + i)^c - 1$

where

 i_a = Yield

i = Periodic interest rate (period = life of loan)

c = Number of compounding periods per year where $c \ge 1$

Lines of Credits

 $I_t = ADB_t(i)$

Where

 I_t = Interest due for period t

 ADB_t = Average daily balance for period t

i =Periodic interest rate

Compensating Balance

- Percentage of line of credit is placed in a lowor non-interest-bearing account
- Determining effective annual interest rate with compensating balance
 - Determine yield
 - Use yield to determine interest paid on funds
 - Determine effective annual interest rate

Compensating Balance

• $i_a = I/(Funds available)$

where

 i_a = Yield

I = Interest

Funds available = Average daily balance – Compensating balance

Commitment Fee

- Interest is paid on unused funds
- Determining effective annual interest rate with commitment fee
 - Determine yield
 - Use yield to determine interest paid on funds
 - □ Determine effective annual interest rate

Commitment Fee

• $i_a = I/(ADB)$

where

 i_a = Yield

I = Interest

ADB = Average daily balance

Other Forms of Financing

- Leasing
- Trade financing
- Credit cards
- Equity

Selecting a Banker

- Complete package
- Specialize in the construction industry
- Size
- Convenient location

Applying for a Loan

- Tax returns
- Financial statements
- Work on hand report
- Overhead budget
- Annual cash flow projection

Applying for a Loan

- Project pro forma (for projects)
- Business plan
- References