

Equivalence

- Cash flows have the same perceived value
- Cash flows are not equal unless they occur at the same period of time
- For example, \$100 today may be equivalent to $\$ 105$ a year from now
- Basis of banking equations in Chapter 16
\qquad

Equivalence Based Upon

- Size of the cash flows
- Timing of the cash flows
- Interest rate

Variables

- $P=$ Present value
- Value at beginning of period 1 (end of period 0)
- $F=$ Future value
- Value at end of period n
- A = Uniform series
- Cash flows are the same for the end of periods 1 through n
- Occurs each and every period
\qquad

Single-Payment Compound-Amount

Factor

- Converts a present value into a future value
- $F=P(1+i)^{n}$
- What will be the value of P dollars in n years at an annual interest rate of i ?
- $n=$ Number of interest compounding periods \square Must be the same length

Single-Payment Present-Worth Factor

- Converts a future value into a present value
- $P=F /(1+i)^{n}$
- How much (P) must I set aside today to have F dollars in n years at an annual interest rate of i ?

Uniform-Series Compound-Amount
Factor

- Converts a uniform series into a future value
- $F=A\left[(1+i)^{n}-1\right] / I$
- If I set aside A dollars every year for n years, how much will I have at the end of n years at an annual interest rate of i ?
- Saving for retirement

Uniform-Series Present-Worth Factor

- Converts a uniform series into a present value
- $P=A\left[(1+i)^{n}-1\right] /\left[i(1+i)^{n}\right]$
- How much can I pay for a home if I can afford a monthly payment of A dollars for n months at a monthly interest rate of i ?
\qquad
\qquad

Cash-flow diagrams

- Shows direction, size, and timing of cash flow

Complex cash flows

- Cash flows occurring at the same period of time may be added or subtracted
- Use time value of money to moved all of the cash flows to the same point in time and add or subtract them

Finding Unknown Periodic Interest Rates

- Solving by trial-and-error
- Set up equations in Excel and use the Goal Seek function to find the solution
- Cash flows that change directions more than once may have multiple solutions

