Module 6

USING THE NET PRESENT VALUE RULE TO MAKE VALUE-CREATING INVESTMENT DECISIONS

Background

- A good investment decision
- One that raises the current market value of the firm's equity, thereby creating value for the firm's owners
- Capital budgeting involves
- Comparing the amount of cash spent on an investment today with the cash inflows expected from it in the future
- Discounting is the mechanism used to account for the time value of money
- Converts future cash flows into today's equivalent value called present value or discounted value
- Apart the timing issue, there is also the issue of the risk associated with future cash flows
- Since there is always some probability that the cash flows realized in the future may not be the expected ones

Background

- After reading this Module, students should understand:
- The major steps involved in a capital budgeting decision
- How to calculate the present value of a stream of future cash flows
- The net present value (NPV) rule and how to apply it to investment decisions
- Why a project's NPV is a measure of the value it creates
- How to use the NPV rule to choose between projects of different sizes or different useful lives
- How the flexibility of a project can be described with the help of managerial options

The Capital Investment Process

- Capital investment decision (capital budgeting decision, capital expenditure decision) involves four steps
- Identification
- Evaluation
- Selection
- Implementation and audit
- Investment proposals are also often classified according to the difficulty in estimating the key valuation parameters
- Required investments
- Replacement investments
- Expansion investments
- Diversification investments

EXHIBIT 6.1:
 The Capital Investment Process.

EXHIBIT 6.2:
 Cash-Flow Time Line for Parcel of Land.

\$11,000

Now

The Alternative Investment

- Both the alternative investment and the one under consideration must share the same attributes
- Most relevant
- Risk
- Tax treatment
- Liquidity

The Opportunity Cost Of Capital

- We assume that the proposed investment is riskless
- Thus, the alternative investment is the deposit of $\$ 10,000$ in a government-insured savings account, which is currently offering a 6 percent return
- Since it is the return we would give up if we buy the land, it is called the project's opportunity cost of capital, or simply, the cost of capital
- Comparing a project's return with that of an alternative investment is a straightforward approach to investment analysis
- But it may fail under some particular patterns of cash flows (see next Module)
- The net present value approach, in contrast, can deal with any pattern of cash flows

The Net Present Value Rule

- Instead of comparing the rates of return for the two investments-the parcel of land and the savings account
- Compare the $\$ 10,000$ payable now to acquire the land with the dollar amount that we would have to invest now in the savings account to have $\$ 11,000$ one year from now
- This comparison is the foundation of the net present value rule

A One-Period Investment

- How much should we invest now in a savings account with a 6 percent interest rate if we want to receive $\$ 11,000$ in one year?
- \$10,377
- $\$ 10,377+\$ 10,377 \times 6 \%=\$ 11,000$ or $11,000 \div 1.06=\$ 10,377$ or
$\$ 11,000\left(\frac{1}{1.06}\right)=\$ 11,000 \times 0.9434=\$ 10,377$
- Working out this example allows us to introduce the concepts of the future value (compounded value) and the present value (discounted value), as well as compound and discount factors for a one-period project (as illustrated in Exhibit 6.3)
- Compounding provides the future value $(\$ 11,000)$ of the present one $(\$ 10,377)$ while discounting provides the present value of the future one
- The compound factor is the factor by which the initial cash outlay $(\$ 10,000)$ must be multiplied to get its future value, while the discount factor is the factor by which the expected cash flow $(\$ 11,000)$ must be multiplied to get its present value

A One-Period Investment

- At 6 percent, we should be indifferent between $\$ 10,377$ now and $\$ 11,000$ in one year
- At that rate, the two cash flows are equivalent
- The difference between the present value of the future cash flow and the initial outlay is called the net present value (NPV)
- An investment should be accepted if its NPV is positive and should be rejected if its NPV is negative
- If the NPV is zero, we would be indifferent between the project and an alternative investment

EXHIBIT 6.3:
 Time Line for One-Period Project.

EXHIBIT 6.4:
 Time Line for Two-Period Investment, No Intermediate Cash Flows.

EXHIBIT 6.5:
 Time Line for Two-Period Investment with Intermediate Cash Flow.

1

$$
C F_{2}=\$ 1,000+\$ 11,000
$$

$$
C F_{1}=\$ 1,000
$$

Exhibit 6.5 shows the cash flow time line of the land's investment, assuming that the
$C F_{0}=\$ 10,000$
parcel of land is rented for $\$ 1,000$ a year for two years and that it is sold after two years
for $\$ 11,000$. We show how the same approach used in the previous scenarios can be extended to a three-period investment with an intermediate cash flow.

EXHIBIT 6.6:
 Time Line for Multiple-Period Investments-The General Case.

Applying The Net Present Value Rule To A Capital Investment Decision

- Applying the net present value rule to an industrial investment project
- Example: Sunlight Manufacturing Company, which is considering adding a new product to its existing line
- Example assumes that the inputs (i.e., the cash flows and the cost of capital) have already been estimated
- Estimation of those inputs is addressed in Module 8 (cash flows) and Module 10 (cost of capital) with the same company
- Computations are shown in Exhibit 6.7

EXHIBIT 6.7:
 Calculation of Present Value for SMC Designer Desk Lamp.

Present value of $\mathrm{CF}_{1}=\$ 832,000 \times \frac{1}{(1+0.09)^{1}}=\$ 832,000 \times 0.9174=\$ 763,276$
Present value of $\mathrm{CF}_{2}=\$ 822,000 \times \frac{1}{(1+0.09)^{2}}=\$ 822,000 \times 0.8417=\$ 691,878$
Present value of $\mathrm{CF}_{3}=\$ 692,000 \times \frac{1}{(1+0.09)^{3}}=\$ 692,000 \times 0.7722=\$ 534,362$
Present value of $\mathrm{CF}_{4}=\$ 554,000 \times \frac{1}{(1+0.09)^{4}}=\$ 554,000 \times 0.7084=\$ 392,454$
Present value of $\mathrm{CF}_{5}=\$ 466,000 \times \frac{1}{(1+0.09)^{5}}=\$ 466,000 \times 0.6499=\$ 302,853$

Why The NPV Rule Is A Good Investment Rule

- The NPV rule is a good investment rule because
- Measures value creation
- Reflects the timing of the project's cash flows
- Reflects its risk
- Additive

A Measure Of Value-Creation

- The present value of a project's expected cash flows stream at its cost of capital
- Estimate of how much the project would sell for if a market existed for it
- The net present value of an investment project represents the immediate change in the wealth of the firm's owners if the project is accepted
- If positive, the project creates value for the firm's owners; if negative, it destroys value

Adjustment For The Timing Of The Project's Cash Flows

- NPV rule takes into consideration the timing of the expected future cash flows
- Demonstrated by comparing two mutually exclusive investments with the same initial cash outlay and the same cumulated expected cash flows
- But with different cash flow profiles
- Exhibit 6.8 describes the two investments
- Exhibit 6.9 shows the computation of the two investments' net present values

EXHIBIT 6.8:
 Cash Flows for Two Investments with $\mathrm{CF}_{0}=\$ 1$ Million and $k=0.10$.

END OF YEAR
1
2
3
4
5

INVESTMENT A
$C F_{1}=\$ 800,000$
$C F_{2}=600,000$
$C F_{3}=400,000$
$C F_{4}=200,000$
$C F_{5}=100,000$

INVESTMENT B

$C F_{1}=\$ 100,000$
$C F_{2}=200,000$
$C F_{3}=400,000$
$C F_{4}=600,000$
$C F_{5}=800,000$

EXHIBIT 6.9:
 Present Values of Cash Flows for Two Investments.

Figures from Exhibit 6.8

END OF YEAR	INVESTMENT A OPPORTUNITY COST OF CAPITAL = 10\%		
$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	$\mathrm{PV}(\$ 800,000)=\$ 800,000 \times 0.9091=$ $\mathrm{PV}(\$ 600,000)=600,000 \times 0.8264=$ $\mathrm{PV}(\$ 400,000)=400,000 \times 0.7513=$ $\mathrm{PV}(\$ 200,000)=200,000 \times 0.6830=$ $\mathrm{PV}(\$ 100,000)=100,000 \times 0.6209=$	$\left.\begin{array}{r} \$ 727,273 \\ 495,868 \\ 300,526 \\ 136,602 \\ 62,092 \end{array}\right\}$	Total Present Values \$1,722,361
END OF YEAR	INVESTMENT B OPPORTUNITY COST OF CAPITAL = 10%		
$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & \operatorname{PV}(\$ 100,000)=\$ 100,000 \times 0.9091= \\ & \operatorname{PV}(\$ 200,000)=200,000 \times 0.8264= \\ & \operatorname{PV}(\$ 400,000)=400,000 \times 0.7513= \\ & \operatorname{PV}(\$ 600,000)=600,000 \times 0.6830= \\ & \operatorname{PV}(\$ 800,000)=800,000 \times 0.6209= \end{aligned}$	$\left.\begin{array}{r} \$ 90,909 \\ 165,289 \\ 300,526 \\ 409,808 \\ 496,737 \end{array}\right\}$	Total Present Values \$1,463,269

Adjustment For The Risk Of The Project's Cash Flows

- Risk adjustment is made through the project's discount rate
- Because investors are risk averse, they will require a higher return from riskier investments
- As a result, a project's opportunity cost of capital will increase as the risk of the investment increases
- By discounting the project' cash flows at a higher rate, the project's net present value will decrease

EXHIBIT 6.10:
 Cash Flows for Two Investments with $\mathrm{CF}_{0}=\$ 1$ Million, $k=0.12$ for Investment C, and $\boldsymbol{k}=0.15$ for Investment D.

EXHIBIT 6.11a: Present Values of Cash Flows for Two Investments.

Figures from Exhibit 6.10

INVESTMENT C	
END OF YEAR	OPPORTUNITY COST OF CAPITAL $=12 \%$

EXHIBIT 6.11b: Present Values of Cash Flows for Two Investments.

Figures from Exhibit 6.10

INVESTMENT D	
END OF YEAR	OPPORTUNITY COST OF CAPITAL $=15 \%$
1	$\operatorname{PV}(\$ 300,000)=\$ 300,000 \times 0.8696=\$ 260,869$
2	$\operatorname{PV}(\$ 300,000)=300,000 \times 0.7561=226,843$
3	$\operatorname{PV}(\$ 300,000)=300,000 \times 0.6575=197,255$
4	$\operatorname{PV}(\$ 300,000)=300,000 \times 0.5718=171,526$
5	$\operatorname{PV}(\$ 300,000)=300,000 \times 0.4972=149,153$

Total Present Values $\quad \$ 1,005,646$

Additive Property

- If one project has an NPV of \$100,000 and another an NPV of \$50,000
- The two projects have a combined NPV of $\$ 150,000$
- Assuming that the two projects are independent
- Additive property has some useful implications
- Makes it easier to estimate the impact on the net present value of a project of changes in its expected cash flows, or in its cost of capital (risk)
- An investment's positive NPV is a measure of value creation to the firm's owners only if the project proceeds according to the budgeted figures
- Consequently, from the managers' perspective, a project's positive NPV is the maximum present value that they can afford to "lose" on the project and still earn the project's cost of capital

Special Cases Of Capital Budgeting

- Comparing projects with unequal sizes
- If there is a limit on the total capital available for investment
- Firm cannot simply select the project(s) with the highest NPV
- Must first find out the combination of investments with the highest present value of future cash flows per dollar of initial cash outlay
- Can be done using the projects' profitability index

Special Cases Of Capital Budgeting

- Firm should first rank the projects in decreasing order of their profitability indexes
- Then select projects with the highest profitability index
- Until it has allocated the total amount of funds at its disposal
- However, the profitability index rule may not be reliable
- When choosing among mutually exclusive investments
- When capital rationing extends beyond the first year of the project

EXHIBIT 6.12:

Cash Flows, Present Values, and Net Present Values for Three Investments of Unequal Size with $k=0.10$.

INVESTMENT E INVESTMENT F INVESTMENT G

(1) Initial cash outlay $\left(\mathrm{CF}_{0}\right)$	$\$ 1,000,000$	$\$ 500,000$	$\$ 500,000$
Year-one cash flow $\left(\mathrm{CF}_{1}\right)$	800,000	200,000	100,000
Year-two cash flow $\left(\mathrm{CF}_{2}\right)$	500,000	510,000	700,000
(2) Present value of CF_{1} and CF_{2} at 10%	$\$ 1,140,496$	$\$ 603,306$	$\$ 669,421$
Net present value $=(2)-(1)$	$\$ 140,496$	$\$ 103,306$	$\$ 169,421$

Exhibit 6.12 describes the analysis of three investment projects of different sizes.

EXHIBIT 6.13: Profitability Indexes for Three Investments of Unequal Size.

Figures from Exhibit 6.12

> INVESTMENT E INVESTMENT F INVESTMENT G
(1) Initial cash outlay
(2) Present value of future cash-flow stream
\$1,140,496
\$603,306
\$669,421
(3) Profitability index $=\frac{(2)}{(1)} \quad \frac{\$ 1,140,496}{\$ 1,000,000}=1.14 \quad \frac{\$ 603,306}{\$ 500,000}=1.21 \quad \frac{\$ 669,421}{\$ 500,000}=1.34$

Exhibit 6.13 shows the profitability index of the three investments.

Special Cases Of Capital Budgeting

- Comparing projects with unequal life spans

- If projects have unequal lives
- Comparison should be made between sequences of projects such that all sequences have the same duration
- In many instances, the calculations may be tedious
- Possible to convert each project's stream of cash flows into an equivalent stream of equal annual cash flows with the same present value as the total cash flow stream
- Called the constant annual-equivalent cash flow or annuity-equivalent cash flow
- Then, simply compare the size of the annuities

EXHIBIT 6.14a:
 Cash Outflows and Present Values of Cost for Two Investments with Unequal Life Spans.

SEQUENCE OF TWO MACHINE A'S

END OF	CASH OUTFLOWS MACHINE 2		TOTAL	PRESENT VALUE COST OF CAPITAL $=10 \%$
YEAR	MACHINE 1		$-\$ 80,000$	$-\$ 80,000$
Now	$-\$ 80,000$		$-4,000$	$-3,636$
1	$-4,000$		$-\$ 84,000$	$-69,422$
2	$-4,000$	$-\$ 80,000$	$-4,000$	$-3,005$
3		$-4,000$	$-4,000$	$-2,732$

Exhibit 6.14 illustrates the case of choosing between two machines, one having an economic life half that of the other.

EXHIBIT 6.14b:
 Cash Outflows and Present Values of Cost for Two Investments with Unequal Life Spans.

ONE MACHINE B

END OF		PRESENT VALUE YEAR
CASH OUTFLOWS	COST OF CAPITAL $=10 \%$	

EXHIBIT 6.15:
 Original and Annuity-Equivalent Cash Flows for Two Investments with Unequal Life Spans.

Figures from Exhibit 6.14 and Appendix 6.1

	Machine A		Machine B	
End of Year	Original Cash Flow	AnnuityEquivalent Cash Flow	Original Cash Flow	AnnuityEquivalent Cash Flow
Now	-\$80,000		-\$120,000	
1	-4,000	-50,096	-3,000	
2	-4,000	-50,096	-3,000	-40,855
3			-3,000	-40,855
4			-3,000	-40,855
Present value (10\%)	-\$86,942	-\$86,942	-\$129,509	-\$129,509
Exhibit 6.15 shows how to apply the annuityequivalent cash flow approach to the choice between the two machines.				

Limitations Of The Net Present
 Value Criterion

- Although the net present value criterion can be adjusted for some situations
- It ignores the opportunities to make changes to projects as time passes and more information becomes available
- NPV rule is a take-it-or-live-it rule
- A project that can adjust easily and at a low cost to significant changes such as
- Marketability of the product
- Selling price
- Risk of obsolescence
- Manufacturing technology
- Economic, regulatory, and tax environments
- Will contribute more to the value of the firm than indicated by its NPV
- Will be more valuable than an alternative project with the same NPV, but which cannot be altered as easily and as cheaply
- A project's flexibility is usually described by managerial options

Managerial Options Embedded In Investment Projects

- The option to switch technologies
- Discussed using the designer desk lamp project of Sunlight Manufacturing Company (SMC) as an illustration
- The option to abandon a project
- Can affect its net present value
- Demonstrated using an extended version of the designer-desk lamp project
- Although the project was planned to last for five years, we assume now that SMC's management will always have the option to abandon the project at an earlier date
- Depending on if the project is a success or a failure

EXHIBIT 6.16:
 Expected Cash Flows, Years 2 through 5, and Their Present Values for Success and Failure of SMC Designer Desk Lamp.

PRESENT VALUE

YEAR 2 YEAR 3 YEAR 4 YEAR 5 COST OF CAPITAL = 9\%
Expected cash flows
according to the initial estimation
\$832,000 \$692,000 \$554,000 \$466,000

Expected cash flows
if the project is successful
$\$ 890,000 \quad \$ 783,000 \quad \$ 612,000 \quad \$ 520,000$
\$2,316,507

Expected cash flows
if the project is
a failure
\$662,000 \$480,000 \$420,000 \$340,000
\$1,576,527
The expected cash flows under the two scenarios are shown in Exhibit 6.16. Given the option to abandon the project before its expected economic life and assuming a certain probability of the failure scenario, the project's NPV can be recalculated, which may or may not affect the investment decision.

Dealing With Managerial Options

- Above options are not the only managerial options embedded in investment projects
- Option to expand
- Option to defer a project
- Managerial options are either worthless or have a positive value
- Thus, NPV of a project will always underestimate the value of an investment project
- The larger the number of options embedded in a project and the higher the probability that the value of the project is sensitive to changing circumstances
- The greater the value of those options and the higher the value of the investment project itself

Dealing With Managerial Options

- Valuing managerial options is a very difficult task
- Managers should at least conduct a sensitivity analysis to identify the most salient options embedded in a project, try at valuing them and then exercise sound judgment

EXHIBIT 6.17:
 Steps Involved in Applying the Net Present Value Rule.

