Module 6

USING THE NET PRESENT VALUE RULE TO MAKE VALUE-CREATING INVESTMENT DECISIONS

Background

- A good investment decision
 - One that raises the current market value of the firm's equity, thereby creating value for the firm's owners
- Capital budgeting involves
 - Comparing the amount of cash spent on an investment today with the cash inflows expected from it in the future
- Discounting is the mechanism used to account for the time value of money
 - Converts future cash flows into today's equivalent value called present value or discounted value
- Apart the timing issue, there is also the issue of the risk associated with future cash flows
 - Since there is always some probability that the cash flows realized in the future may not be the expected ones

Background

- After reading this Module, students should understand:
 - The major steps involved in a capital budgeting decision
 - How to calculate the present value of a stream of future cash flows
 - The net present value (NPV) rule and how to apply it to investment decisions
 - Why a project's NPV is a measure of the value it creates
 - How to use the NPV rule to choose between projects of different sizes or different useful lives
 - How the flexibility of a project can be described with the help of managerial options

The Capital Investment Process

- Capital investment decision (capital budgeting decision, capital expenditure decision) involves four steps
 - Identification
 - Evaluation
 - Selection
 - Implementation and audit
- Investment proposals are also often classified according to the difficulty in estimating the key valuation parameters
 - Required investments
 - Replacement investments
 - Expansion investments
 - Diversification investments

EXHIBIT 6.1: The Capital Investment Process.

EXHIBIT 6.2: Cash-Flow Time Line for Parcel of Land.

The Alternative Investment

- Both the alternative investment and the one under consideration must share the same attributes
 - Most relevant
 - Risk
 - Tax treatment
 - Liquidity

The Opportunity Cost Of Capital

- We assume that the proposed investment is riskless
 - Thus, the alternative investment is the deposit of \$10,000 in a government-insured savings account, which is currently offering a 6 percent return
 - Since it is the return we would give up if we buy the land, it is called the project's opportunity cost of capital, or simply, the cost of capital
- Comparing a project's return with that of an alternative investment is a straightforward approach to investment analysis
 - But it may fail under some particular patterns of cash flows (see next Module)
 - The net present value approach, in contrast, can deal with any pattern of cash flows

The Net Present Value Rule

- Instead of comparing the rates of return for the two investments—the parcel of land and the savings account
 - Compare the \$10,000 payable now to acquire the land with the dollar amount that we would have to invest now in the savings account to have \$11,000 one year from now
 - This comparison is the foundation of the net present value rule

A One-Period Investment

- How much should we invest now in a savings account with a 6 percent interest rate if we want to receive \$11,000 in one year?
 - **\$10,377**
 - $\$10,377 + \$10,377 \times 6\% = \$11,000 \text{ or } 11,000 \div 1.06 = \$10,377 \text{ or}$ $\$11,000 \left(\frac{1}{1.06}\right) = \$11,000 \times 0.9434 = \$10,377$
 - Working out this example allows us to introduce the concepts of the future value (compounded value) and the present value (discounted value), as well as compound and discount factors for a one-period project (as illustrated in <u>Exhibit 6.3</u>)
 - Compounding provides the future value (\$11,000) of the present one (\$10,377) while discounting provides the present value of the future one
 - The compound factor is the factor by which the initial cash outlay (\$10,000) must be multiplied to get its future value, while the discount factor is the factor by which the expected cash flow (\$11,000) must be multiplied to get its present value

A One-Period Investment

- At 6 percent, we should be indifferent between \$10,377 now and \$11,000 in one year
 - At that rate, the two cash flows are equivalent
- The difference between the present value of the future cash flow and the initial outlay is called the net present value (NPV)
 - An investment should be accepted if its NPV is positive and should be rejected if its NPV is negative
 - If the NPV is zero, we would be indifferent between the project and an alternative investment

EXHIBIT 6.3: Time Line for One-Period Project.

EXHIBIT 6.4: Time Line for Two-Period Investment, No Intermediate Cash Flows.

EXHIBIT 6.5: Time Line for Two-Period Investment with Intermediate Cash Flow.

 $CF_1 = $1,000$ $CF_2 = $1,000 + $11,000$ 0 2 Exhibit 6.5 shows the cash flow time line of the land's investment, assuming that the parcel of land is rented for \$1,000 a year for $CF_0 = $10,000$ two years and that it is sold after two years for \$11,000. We show how the same approach used in the previous scenarios can be extended to a three-period investment with an intermediate cash flow.

EXHIBIT 6.6: Time Line for Multiple-Period Investments—The General Case.

Applying The Net Present Value Rule To A Capital Investment Decision

- Applying the net present value rule to an industrial investment project
 - Example: Sunlight Manufacturing Company, which is considering adding a new product to its existing line
 - Example assumes that the inputs (*i.e.*, the cash flows and the cost of capital) have already been estimated
 - Estimation of those inputs is addressed in Module 8 (cash flows) and Module 10 (cost of capital) with the same company
 - Computations are shown in **Exhibit 6.7**

EXHIBIT 6.7: Calculation of Present Value for SMC Designer Desk Lamp.

Present value of $CF_1 = \$832,000 \times \frac{1}{(1+0.09)^1} = \$832,000 \times 0.9174 = \$763,276$ Present value of $CF_2 = \$822,000 \times \frac{1}{(1+0.09)^2} = \$822,000 \times 0.8417 = \$691,878$ Present value of $CF_3 = \$692,000 \times \frac{1}{(1+0.09)^3} = \$692,000 \times 0.7722 = \$534,362$ Present value of $CF_4 = \$554,000 \times \frac{1}{(1+0.09)^4} = \$554,000 \times 0.7084 = \$392,454$ Present value of $CF_5 = \$466,000 \times \frac{1}{(1+0.09)^5} = \$466,000 \times 0.6499 = \$302,853$

Total present value at 10%

\$2,684,823

Why The NPV Rule Is A Good Investment Rule

- The NPV rule is a good investment rule because
 - Measures value creation
 - Reflects the timing of the project's cash flows
 - Reflects its risk
 - Additive

A Measure Of Value-Creation

- The present value of a project's expected cash flows stream at its cost of capital
 - Estimate of how much the project would sell for if a market existed for it
- The net present value of an investment project represents the immediate change in the wealth of the firm's owners if the project is accepted
 - If positive, the project creates value for the firm's owners; if negative, it destroys value

Adjustment For The Timing Of The Project's Cash Flows

- NPV rule takes into consideration the timing of the expected future cash flows
 - Demonstrated by comparing two mutually exclusive investments with the same initial cash outlay and the same cumulated expected cash flows
 - But with different cash flow profiles
- Exhibit 6.8 describes the two investments
- Exhibit 6.9 shows the computation of the two investments' net present values

EXHIBIT 6.8: Cash Flows for Two Investments with $CF_0 =$ 1 Million and k = 0.10.

END OF YEAR	INVESTMENT A	INVESTMENT B
1	CF ₁ = \$800,000	CF ₁ = \$100,000
2	CF ₂ = 600,000	CF ₂ = 200,000
3	CF ₃ = 400,000	CF ₃ = 400,000
4	CF ₄ = 200,000	$CF_4 = 600,000$
5	CF ₅ = 100,000	CF ₅ = 800,000
Total Cash Flows	\$2,100,000	\$2,100,000

EXHIBIT 6.9: Present Values of Cash Flows for Two Investments.

Figures from Exhibit 6.8

END OF YEAR	INVESTMEN OPPORTUNITY COST OF	IT A CAPITAL = 10%
1 2 3 4 5	$PV(\$800,000) = \$800,000 \times 0.9091 = PV(\$600,000) = 600,000 \times 0.8264 = PV(\$400,000) = 400,000 \times 0.7513 = PV(\$200,000) = 200,000 \times 0.6830 = PV(\$100,000) = 100,000 \times 0.6209 = $	\$727,273 495,868 300,526 136,602 62,092 Total Present Values \$1,722,361
END OF YEAR	INVESTMEN OPPORTUNITY COST OF	T B CAPITAL = 10%

Adjustment For The Risk Of The Project's Cash Flows

- Risk adjustment is made through the project's discount rate
 - Because investors are risk averse, they will require a higher return from riskier investments
 - As a result, a project's opportunity cost of capital will increase as the risk of the investment increases
 - By discounting the project' cash flows at a higher rate, the project's net present value will decrease

EXHIBIT 6.10: Cash Flows for Two Investments with $CF_0 = 1 Million, k = 0.12 for Investment C, and k = 0.15 for Investment D.

END OF YEAR	INVESTMENT C	INVESTMENT D
1	CF ₁ = \$300,000	CF ₁ = \$300,000
2	CF ₂ = 300,000	CF ₂ = 300,000
3	CF ₃ = 300,000	CF ₃ = 300,000
4	$CF_4 = 300,000$	$CF_4 = 300,000$
5	CF ₅ = 300,000	CF ₅ = 300,000

Exhibit 6.10 describes two investments with the same initial cash outlay, the same cumulative cash flows, the same cash flow profile, but with different cost of capital.

\$1,500,000

Total Cash Flows

\$1,500,000

EXHIBIT 6.11a: Present Values of Cash Flows for Two Investments.

Figures from Exhibit 6.10

END OF YEAR	INVESTMENT C OPPORTUNITY COST OF CAPITAL = 12%
1	PV(\$300,000) = \$300,000 × 0.8929 = \$267,857
2	PV(\$300,000) = 300,000 × 0.7972 = 239,158
3	PV(\$300,000) = 300,000 × 0.7118 = 213,534
4	PV(\$300,000) = 300,000 × 0.6355 = 190,655
5	PV(\$300,000) = 300,000 × 0.5674 = 170,228

Total Present Values \$1,081,432

Exhibit 6.11 shows the computation of the two investments' net present values.

EXHIBIT 6.11b: Present Values of Cash Flows for Two Investments.

Figures from Exhibit 6.10

END OF YEAR	INVESTMENT D OPPORTUNITY COST OF CAPITAL = 15%			
1	PV(\$300,000) = \$300,000 × 0.8696	= \$260,869		
2	PV(\$300,000) = 300,000 × 0.7561	= 226,843		
3	PV(\$300,000) = 300,000 × 0.6575	= 197,255		
4	PV(\$300,000) = 300,000 × 0.5718	= 171,526		
5	PV(\$300,000) = 300,000 × 0.4972	= 149,153		

Total Present Values\$1,005,646

Additive Property

- If one project has an NPV of \$100,000 and another an NPV of \$50,000
 - The two projects have a combined NPV of \$150,000
 - Assuming that the two projects are independent
- Additive property has some useful implications
 - Makes it easier to estimate the impact on the net present value of a project of changes in its expected cash flows, or in its cost of capital (risk)
- An investment's positive NPV is a measure of value creation to the firm's owners only if the project proceeds according to the budgeted figures
 - Consequently, from the managers' perspective, a project's positive NPV is the maximum present value that they can afford to "lose" on the project and still earn the project's cost of capital

Special Cases Of Capital Budgeting

Comparing projects with unequal sizes

- If there is a limit on the total capital available for investment
 - Firm cannot simply select the project(s) with the highest NPV
 - Must first find out the combination of investments with the highest present value of future cash flows per dollar of initial cash outlay
 - Can be done using the projects' **profitability index**

Special Cases Of Capital Budgeting

- Firm should first rank the projects in decreasing order of their profitability indexes
 - Then select projects with the highest profitability index
 - Until it has allocated the total amount of funds at its disposal
- However, the profitability index rule may not be reliable
 - When choosing among mutually exclusive investments
 - When capital rationing extends beyond the first year of the project

EXHIBIT 6.12: Cash Flows, Present Values, and Net Present Values for Three Investments of Unequal Size with *k*= 0.10.

	INVESTMENT E INVESTMENT F IN		INVESTMENT G
(1) Initial cash outlay (CF ₀) Year-one cash flow (CF ₁) Year-two cash flow (CF ₂)	\$1,000,000 800,000 500,000	\$500,000 200,000 510,000	\$500,000 100,000 700,000
(2) Present value of CF ₁ and CF ₂ at 10%	\$1,140,496	\$603,306	\$669,421
Net present value = (2) – (1)	\$140,496	\$103,306	\$169,421
Exhibit 6.12 describes the analysis of three investment projects of different sizes.		of It	

EXHIBIT 6.13: Profitability Indexes for Three Investments of Unequal Size.

Figures from Exhibit 6.12

	INVESTMENT E	INVESTMENT F	INVESTMENT G
(1) Initial cash outlay	\$1,000,000	\$500,000	\$500,000
(2) Present value of future cash-flow stream	\$1,140,496	\$603,306	\$669,421
(3) Profitability index = $\frac{(2)}{(1)}$	$\frac{\$1,140,496}{\$1,000,000} = 1.14$	$4 \frac{\$603,306}{\$500,000} = 1.21$	$\frac{\$669,421}{\$500,000} = 1.34$

Exhibit 6.13 shows the profitability index of the three investments.

Special Cases Of Capital Budgeting

Comparing projects with unequal life spans

- If projects have unequal lives
 - Comparison should be made between sequences of projects such that all sequences have the same duration
 - In many instances, the calculations may be tedious
 - Possible to convert each project's stream of cash flows into an equivalent stream of equal annual cash flows with the same present value as the total cash flow stream
 - Called the constant annual-equivalent cash flow or annuity-equivalent cash flow
 - Then, simply compare the size of the annuities

EXHIBIT 6.14a: Cash Outflows and Present Values of Cost for Two Investments with Unequal Life Spans.

SEQUENCE OF TWO MACHINE A'S

END OF YEAR	MACHINE 1	CASH OUTFLOWS MACHINE 2	TOTAL	PRESENT VALUE COST OF CAPITAL = 10%
Now	-\$80,000		-\$80,000	-\$80,000
1	-4,000		-4,000	-3,636
2	-4,000	-\$80,000	-\$84,000	-69,422
3		-4,000	-4,000	-3,005
4		-4,000	-4,000	-2,732

Present Value of Costs

-\$158,795

Exhibit 6.14 illustrates the case of choosing between two machines, one having an economic life half that of the other.

Hawawini & Viallet

Module 6

EXHIBIT 6.14b: Cash Outflows and Present Values of Cost for Two Investments with Unequal Life Spans.

ONE MACHINE B

END OF YEAR	CASH OUTFLOWS	PRESENT VALUE COST OF CAPITAL = 10%
Now	-\$120,000	-\$120,000
1	-3,000	-2,727
2	-3,000	-2,479
3	-3,000	-2,254
4	-3,000	-2,049
	Present Value of Costs	-\$129,509

EXHIBIT 6.15: Original and Annuity-Equivalent Cash Flows for Two Investments with Unequal Life Spans.

Figures from Exhibit 6.14 and Appendix 6.1

	Mach	ine A	Machine B		
End of Year	Original Cash Flow	Annuity- Equivalent Cash Flow	Original Cash Flow	Annuity- Equivalent Cash Flow	
Now	-\$80,000		-\$120,000		
1	-4,000	-50,096	-3,000		
2	-4,000	-50,096	-3,000	-40,855	
3			-3,000	-40,855	
4			-3,000	-40,855	
Present value (10%)	-\$86,942	-\$86,942	-\$129,509	-\$129,509	
<u>Exhibit</u> equiva					
Hawawini & Viallet		Module 6			

Limitations Of The Net Present Value Criterion

- Although the net present value criterion can be adjusted for some situations
 - It ignores the opportunities to make changes to projects as time passes and more information becomes available
 - NPV rule is a take-it-or-live-it rule
- A project that can adjust easily and at a low cost to significant changes such as
 - Marketability of the product
 - Selling price
 - Risk of obsolescence
 - Manufacturing technology
 - Economic, regulatory, and tax environments
 - Will contribute more to the value of the firm than indicated by its NPV
 - Will be more valuable than an alternative project with the same NPV, but which cannot be altered as easily and as cheaply
- A project's flexibility is usually described by managerial options

Module 6

Managerial Options Embedded In Investment Projects

The option to switch technologies

 Discussed using the designer desk lamp project of Sunlight Manufacturing Company (SMC) as an illustration

The option to abandon a project

- Can affect its net present value
- Demonstrated using an extended version of the designer-desk lamp project
 - Although the project was planned to last for five years, we assume now that SMC's management will always have the option to abandon the project at an earlier date
 - Depending on if the project is a success or a failure

EXHIBIT 6.16: Expected Cash Flows, Years 2 through 5, and Their Present Values for Success and Failure of SMC Designer Desk Lamp.

	YEAR 2	YEAR 3	YEAR 4	YEAR 5	PRESENT VALUE COST OF CAPITAL = 9%
Expected cash flows	S				
according to the initial estimation	\$832,000	\$692,000	\$554,000	\$466,000	_
Expected cash flows	S				
successful	\$890,000	\$783,000	\$612,000	\$520,000	\$2,316,507
Expected cash flows if the project is	S				
a failure	\$662,000	\$480,000	\$420,000	\$340,000	\$1,576,527
The expected cash flows under the two scenarios are shown in <u>Exhibit 6.16</u> . Given the option to abandon the project before its expected economic life and assuming a certain probability of the failure scenario, the project's NPV can be recalculated, which may or may not affect the investment decision.					

Dealing With Managerial Options

- Above options are not the only managerial options embedded in investment projects
 - Option to expand
 - Option to defer a project
- Managerial options are either worthless or have a positive value
 - Thus, NPV of a project will always underestimate the value of an investment project
 - The larger the number of options embedded in a project and the higher the probability that the value of the project is sensitive to changing circumstances
 - The greater the value of those options and the higher the value of the investment project itself

Dealing With Managerial Options

- Valuing managerial options is a very difficult task
 - Managers should at least conduct a sensitivity analysis to identify the most salient options embedded in a project, try at valuing them and then exercise sound judgment

EXHIBIT 6.17: Steps Involved in Applying the Net Present Value Rule.

