Module 10

ESTIMATING THE COST OF CAPITAL

Cash is not free—it comes at a price

- The price is the cost to the firm of using investors' money
 - Cost of capital
 - Return expected by the investors for the capital they supply

Objective of Module

- Shows how to estimate the cost of capital to be used in discounted cash flows models
- Investors do not normally invest directly in projects
 - They invest in the firms that undertake projects
 - Challenge is to identify firms, called **proxies** or **pure plays**
 - Exhibit the same risk characteristics as the project under consideration.
 - After a proxy has been identified need to estimate the return expected by the investors who hold the securities the proxy has issued
 - Assume that there are only two types of securities
 - Straight bonds
 - Common shares

- Return expected from the assets managed by a firm must be the total of the returns expected by bondholders and shareholders, weighted by their respective contribution to the financing of these assets
 - Weighted average cost of capital or WACC
- Sunlight Manufacturing Company's (SMC) desk lamp project
 - Used to illustrate the case when a project's cost of capital is the same as the firm's cost of capital
- Buddy's Restaurant Project
 - Illustrates how to estimate the project's cost of capital when the project has a risk that differs from the risk of the firm

- After reading this Module, students should understand:
 - How to estimate the cost of debt
 - How to estimate the cost of equity capital
 - How to combine the cost of different sources of financing to obtain a project's weighted average cost of capital
 - The difference between the cost of capital for a firm and the cost of capital for a project

Identifying Proxy Or Pure-Play Firms

- When the project's risk profile is similar to the firm's risk profile, the proxy is the firm itself
- Classification systems used to select pure-plays are far from perfect
 - Often trade-offs need to be made between possible large measurement errors of a small sample of closely comparable companies and a larger sample of firms that are only loosely comparable to the project

Estimating The Cost Of Debt

- If a firm takes out a loan, the firm's cost of debt is the rate charged by the bank
- If we know a sufficient amount of information the valuation formula can be solved for the investors' required rate of return

 $Bond Price = \frac{Coupon PMT_{t}}{(1+k_{D})^{t}} + \frac{Coupon PMT_{t+1}}{(1+k_{D})^{t+1}} + \frac{Coupon PMT_{t+2}}{(1+k_{D})^{t+2}} + \dots + \frac{Coupon PMT_{T}}{(1+k_{D})^{T}}$ This rate is the estimated cost of debt for the issuer.

Estimating The Cost Of Debt

- If the firm has no bonds outstanding, its cost of debt can be estimated by adding a credit risk spread to the yield on government securities of the same maturity
- Since interest expenses are tax deductible, the aftertax cost of debt is the relevant cost of debt
 - After-tax cost of debt = Pre-tax cost of debt × (1 marginal corporate tax rate)
 - However, the after tax cost of debt is a valid estimator only if
 - The firm is profitable enough, or
 - A carryback or carry forward rule applies to interest expenses

Estimating The Cost Of Equity: The Dividend Discount Model

- According to the dividend discount model, the price of a share should be equal to
 - Present value of the stream of future cash dividends discounted at the firm's cost of equity
- The dividend discount model cannot be use to solve for the cost of equity
 - Unless simplifying assumptions regarding the dividend growth rate are made

Estimating The Cost Of Equity: Dividends Grow At A Constant Rate

- Firm's cost of equity is the sum of its expected dividend yield and the expected dividend growth rate
 - If we assume the dividend that a firm is expected to pay next year will grow at a constant rate forever

$$k_{E} = \frac{DIV_{1}}{P_{0}} + g$$

Estimating The Cost Of Equity: How Reliable Is The Dividend Discount Model?

- For the vast majority of companies, the simplistic assumptions underlying the reduced version of the dividend discount model are unacceptable
 - Thus, an alternative valuation approach is needed
 - The capital asset pricing model or CAPM

Estimating The Cost Of Equity: The Capital Asset Pricing Model

- The greater the risk, the higher the expected return
 - What is the nature of the risk?
 - How is it measured?
 - How does it determine the return expected by shareholders from their investment?

EXHIBIT 10.1: Risk and Return for the Sun Cream and Umbrella Investments.

Exhibit 10.1 shows returns of two hypothetical and perfectly negatively correlated stocks having the same average return.

Investing equal amounts in both stocks results in the same average return, which is now *riskless*. In other words, **diversification helps reduce risk.**

Diversification Reduces Risk

A major implication of holding a diversified portfolio of securities is that the risk of a single stock can be divided into two components

Unsystematic or diversifiable risk

- Can be eliminated through portfolio diversification
 - **Includes** company-specific events such as the discovery of a new product (positive effect) or a labor strike (negative effect)

Systematic or nondiversifiable risk

- Cannot be eliminated through portfolio diversification
 - Events that affect the entire economy instead of only one firm, such as
 - Changes in the economy's growth rate, inflation rate and interest rates

Diversification Reduces Risk

- Financial markets will not reward unsystematic risk
 - Because it can be eliminated through diversification at practically no cost
 - Thus, the only risk that matters in determining the required return on a financial asset is the asset's systematic risk
 - In other words, the required rate of return on a financial asset depends only on its systematic risk

Measuring Systematic Risk With the Beta Coefficient

- A firm's systematic risk is usually measured relative to the market portfolio
 - Portfolio that contains all the assets in the world
- Systematic risk of a stock is estimated by
 - Measuring the sensitivity of its returns to changes in a broad stock market index
 - Such as the S&P 500 index
 - This sensitivity is called the stock's beta coefficient

EXHIBIT 10.2: SMC Stock Monthly Returns versus the S&P 500 Monthly Returns.

Exhibit 10.2 shows how the beta of SMC's stock (1.05) was estimated by plotting SMC's stock returns against the returns of the S&P 500 during the last five years. The slope of the characteristic line measures beta.

EXHIBIT 10.3: Beta Coefficients of a Sample of U.S. Stocks.

Texas Instrument	1.60	AT&T	1.00
Black & Decker Corp.	1.50	Bayer AG	1.00
Maytag Corporation	1.50	McDonald's	0.90
Navistar International	1.45	Dow Chemical	0.90
Intel Corporation	1.35	Shell Transport & Trading	0.90
World Com, Inc.	1.35	Smithkline Beecham	0.80
US Airways	1.35	Boston Beer	0.80
United Air Lines	1.20	Walgreen	0.80
IBM	1.20	TotalFinaElf	0.80
Hewlett Packard Company	1.20	Coca-Cola Co.	0.80
LVMH Moet Hennessy LV	1.20	New York Times, Co.	0.80
U.S. Home & Gardens, Inc.	1.20	Merck & Co., Inc.	0.70
Bank of America Corp.	1.15	Chevron Corporation	0.70
American Express Corp.	1.15	Diageo PLC	0.70
General Motors	1.10	American Water Works Co.	0.40
Air Gas	1.05	Consolidated Edison Co.	0.40

The Impact Of Financial Leverage On A Stock's Beta

A firm's risk depends on

- Risk of the cash flows generated by the firm's assets (business risk)
 - Firm's asset (or unlevered) beta captures its business risk

$$\beta_{\text{asset}} = \frac{\beta_{\text{equity}}}{\left[1 + (1 - \tan \text{rate})\frac{\text{Debt}}{\text{Equity}}\right]}$$

The risk resulting from the use of debt (financial risk)

- Thus, firm's beta coefficient is affected by both
 - Firm's equity beta (or levered beta) captures both business and financial risk

$$\beta_{\text{equity}} = \beta_{\text{asset}} \left[1 + (1 - \tan \text{ rate}) \frac{\text{Debt}}{\text{Equity}} \right]$$

EXHIBIT 10.4: Average Annual Rate of Return on Common Stocks, Corporate Bonds, U.S. Government Bonds, and U.S. Treasury Bills, 1926 to 1995.

TYPE OF	AVERAGE ANNUAL RETURN	AVERAGE RISK PREMIUM DIFFERENCE BETWEEN RETURN OF INVESTMENT AND RETURN OF	
		TREASURY BILLS	GOVERNMENT BONDS
Common stocks (S&P 5	00) 11.3%	7.5%	6.2%
Corporate bonds	5.6%	1.8%	0.5%
Government bonds	5.1%	1.3%	-
Treasury bills	3.8%	—	-

Source: Ibbotson Associates, Inc., 2000 Yearbook.

Exhibit 10.4 reports average annual returns for four classes of U.S. securities: common stocks, corporate bonds, government bonds, and Treasury bills. They have different returns because they have different risks.

The Capital Asset Pricing Model (CAPM)

- Treasury bills are the safest investment available
 - Usually used as a proxy for the risk-free rate
- Risk premium of a security
 - Difference between the *expected* return on a security and the risk-free rate
- Market risk premium
 - Risk premium of the market portfolio

The Capital Asset Pricing Model (CAPM)

- Since beta measures a security's risk relative to the market portfolio
 - A security's risk premium equals the market risk premium × the security's beta.
- The CAPM states that the expected return on any security is the risk-free rate, plus the market risk premium multiplied by the security's beta

$$\mathsf{R}_{\mathsf{i}} = \mathsf{R}_{\mathsf{F}} + (\mathsf{R}_{\mathsf{M}} - \mathsf{R}_{\mathsf{F}}) \times \beta_{\mathsf{i}}$$

EXHIBIT 10.5: The Capital Asset Pricing Model.

Using The CAPM To Estimate SMC's Cost Of Equity

- Treasury bill rate is replaced by the rate on government bonds
 - Since it is difficult to estimate future Treasury bill rates
- SMC's cost of equity of 12.37% is estimated from the market risk premium of 6.2 percent and SMC's beta of 1.06

■ K_{E, SMC} = 5.8% + (6.2%) x 1.06 = 12.37%

EXHIBIT 10.6: Estimation of the Cost of Equity for a Sample of Companies Listed on the London Stock Exchange, Using the CAPM.

Government Bond Rate = 5.1% and Market Risk Premium = 6.2% (November 2000).

Company	Industry	Beta Coefficient	Estimate Cost of Equity with the CAPM
British Airways	Airline	1.30	5.1% x (6.2% x 1.3) = 13.2%
Smithkline Beecham	Pharmaceuticals	1.15	5.1% x (6.2% x 1.15) = 12.2%
British Telecom	Telecommunications	0.94	5.1% x (6.2% x 0.94) = 11.0%
Inchcape	Distribution	0.60	5.1% x (6.2% x 0.60) = 8.8%
Marks & Spencer	Retailing	0.44	5.1% x (6.2% x 0.44) = 7.8%

Source: Datastream

Estimating The Cost Of Capital Of A Firm

What is the firm's cost of capital?

- Minimum rate of return the project must generate
 - In order to meet the return expectations of its suppliers of capital
 - Assuming that a project has the same risk as the firm that would undertake it
- A firm's cost of capital is its weighted average cost of capital, or WACC
 - Assuming that the firm is financed by debt and equity, its WACC is equal to
 - Weighted average of the cost of these two means of financing
 - Weights equal to the relative proportions of debt and equity used in financing the firm's assets

WACC =
$$k_D(1 - T_c) \frac{D}{E + D} + k_E \frac{E}{E + D}$$

The Firm's Target Capital Structure

Target capital structure

- The debt-equity mix to use in the estimation of a firm's WACC
 - Note: the firm's current capital structure may not be its target capital structure
- Proportions of debt and equity financing in the WACC should be estimated using the *market values* of debt and equity
 - Not their *accounting* or *book* values
- The market value of equity (debt) of a publicly traded company is simply its share (bond) price multiplied by the number of shares (bonds) outstanding

The Firm's Target Capital Structure

- When market values are not available most analysts use book values
 - Debt and equity ratio based on book values can be quite different
 - Thus, when market data are not available
 - Market value ratios of proxy firms should be used rather than the firm's own book value based ratios

EXHIBIT 10.7: SMC's Managerial Balance Sheet.

INVESTED CAPI	TAL OR NET ASSETS	CAPITAL EMPLOYED	
Cash	\$10,000,000	Long-term debt ¹ 90,000 bonds at par value \$1,000	\$90,000,000
Working capital requirement	\$50,000,000		
		Owners' equity	\$90,000,000
		2,500,000 shares at par value \$10	\$25,000,000
Net fixed assets	\$120,000,000	Retained earnings	\$65,000,000
Total	\$180,000,000	Total	\$180,000,000

¹ SMC has no short-term debt.

The Firm's Cost Of Debt And Equity

Cost of debt can be estimated using

- Bond valuation formula
- Credit spread approach
- By asking the bank
 - Relevant cost of debt is the after-tax cost of debt

Cost of equity can be estimated using the CAPM

When there are no available share prices, the average beta of proxy firms is used

Summary Of The Firm's WACC Calculations

- Exhibit 10.8 summarizes the four steps necessary to estimate a firm's WACC (SMC values in parentheses):
 - Estimate the relative proportion of debt and equity (40.5 percent debt)
 - Estimate the firm's after tax cost of debt (4.02 percent)
 - Estimate the firm's cost of equity (12.37 percent)
 - Calculate the firm's WACC (9 percent)
- This WACC is the discount rate the firm should use when making investment decisions
 - But only if projects involved have the same risk profile as that of the firm

EXHIBIT 10.8a: The Estimation of a Firm's Weighted Average Cost of Capital (WACC), Including an Application to Sunlight Manufacturing Company (SMC).

STEPS TO FOLLOW	HOW TO
Step 1: Estimate the firm's relative proportions of debt (D) and equity (E) financing: $\frac{D}{E+D} = \frac{E}{E+D}$	 Use the firm's market values of debt and equity. The market value of debt is computed from data on outstanding bonds using the bond valuation formula (equation 10.1).
	 The market value of equity is the share price times the number of shares outstanding.
	 If the firm's securities are not publicly traded use the market value rations of

proxy firms.

EXHIBIT 10.8b: The Estimation of a Firm's Weighted Average Cost of Capital (WACC), Including an Application to Sunlight Manufacturing Company (SMC).

	STEPS TO FOLLOW	HOW TO
Step 2:	Estimate the firm's aftertax cost of debt: <i>k</i> _D (1 – T _c).	 If the firm has outstanding bonds that are publicly traded, use equation 10.1 to estimate k D.
		 Otherwise, use the credit spread equation (equation 10.2) or ask the bank.
		 Use the marginal corporate tax rate for T_c.

EXHIBIT 10.8c: The Estimation of a Firm's Weighted Average Cost of Capital (WACC), Including an Application to Sunlight Manufacturing Company (SMC).

STE	EPS TO FOLLOW	HOW TO
Step 3:	Estimate the firm's cost of equity: <i>K</i> _E .	 Use the capital asset pricing model (equation 10.11).
		 The risk-free rate is the rate on government bonds.
		 The market risk premium is 6.2% (historical average).
Step 4:	Calculate the firm's weighted average cost of capital (WACC).	 Use the beta of the firm's stock. If the firm's shares are not publicly traded, estimate beta from proxies.
		• WACC = $k_D(1 - T_c) \frac{D}{E + D} + k_E \frac{E}{E + D}$

Estimating The Cost Of Capital Of A Project

- A project's cost of capital is determined by its risk
 - Some projects have risk characteristics similar to those of the firms that would undertake them
 - While others have a risk profile *different* from that of the firm
 - The following sections show how to estimate the cost of capital for the two types of projects

The Project's Risk Is Similar To The Risk Of The Firm

- In this case, the firm itself is the appropriate proxy for the project
 - Project's WACC is simply the firm's WACC

The Project's Risk Is Different From The Risk Of The Firm

- When a project has risk characteristics different from that of the firm
 - Investors expect a return from the project to at least equal the return they would get from the proxy firms
- First, the cost of capital of the proxy firms should be estimated assuming that they have no debt financing and pay no tax
 - These estimates are adjusted to reflect the project's target capital structure and tax rate
 - Procedure is illustrated using the Buddy's restaurants project

The Project's Risk Is Different From The Risk Of The Firm

The project's target capital structure

- Assumption: the proxy firms' capital structure is a good approximation of the financial leverage that investors require for the project
- Thus, the project's financing ratios are set equal to the average of the proxies' financing ratios

EXHIBIT 10.9a: Proxies for Buddy's Restaurants.

	EQUITY BETA ¹	DEBT-TO-EQUITY RATIO ^{1,2} D E At market value	ASSET BETA ³
McDonalds	0.83	0.16	0.74
Wendy's International	0.63	0.08	0.60
Average values	0.73	0.12	0.67

¹ From Yahoo!Finance, November 2000.

 2 D = debt; E = equity.

³ Calculated according to equation 10.7 with a corporate tax rate of 40 percent.

Exhibit 10.9 reports the financing ratios for the Buddy's Restaurants proxy firms and their average values.

EXHIBIT 10.9b: Proxies for Buddy's Restaurants.

	DEBT RATIO ^{1,2} E + D		EQUITY RATIO ^{1,2} <u>E</u> E + D	
	At market value At book value		At market value	At book value
McDonalds Wendy's International	0.14 0.16	0.43 0.41	0.86 0.84	0.57 0.59
Average values	0.15	0.42	0.85	0.58

¹ From Yahoo!Finance, November 2000.

 2 D = debt; E = equity.

The Project's Risk Is Different From The Risk Of The Firm

The project's costs of debt and equity

- Both the cost of equity and the cost of debt depend on the firm's debt ratio
 - However, in practice, it is only the cost of equity that is assumed to be significantly affected by changes in financial leverage
 - Adjust for differences in capital structure when using proxies

Buddy's Restaurants Project

Two proxy firms

- McDonalds with a rating of Aa2 and a debt rate of 7.74%
- Wendy's International with a rating of Baa1 and a debt rate of 8.32%
 - Average = 8.03%
 - Aftertax cost of debt
 - 8.03% x (1 − 0.4) = 4.82%

Buddy's Restaurants Project

- Estimating the cost of equity for the Buddy's Restaurants Project
 - If proxies have different capital structures than the project
 - Each of the proxies' equity beta is first "un-levered"
 - Then the mean of all the "un-levered" betas is "re-levered" at the project's target capital structure, to obtain the project's equity beta

$$3_{\text{equity, Buddy's}} = 0.67 \times [1 + (1 - 0.40) \times 0.12] = 0.72$$

 $k_{\text{E, Buddy's}} = 5.8\% + 6.2\% \times 0.72 = 10.26\%$

Buddy's Restaurants Project

- Estimating the WACC for the Buddy's Restaurants Project
 - Exhibit 10.10 summarize the steps required to estimate the cost of capital when the project's risk is different from the risk of the firm
 - When applied to the Buddy's Restaurants project a WACC of 9.4% is estimated

EXHIBIT 10.10a: The Estimation of a Project's Cost of Capital when the Project Risk Is Different from the Risk of the Firm, Including an Application to the Buddy's Restaurants Project.

Step 1: Estimate the project's relative proportions of debt (D) and equity (E) financing:

$$\frac{D}{E+D} \text{ and } \frac{E}{E+D}$$

using proxy firms.

• Use the proxies' market values of debt and equity.

HOW TO

- The market value of debt is computed from data on outstanding bonds using the bond valuation formula (equation 10.1).
- The market value of equity is the share price times the number of shares outstanding.
- Take the mean of the proxies' ratios.

EXHIBIT 10.10b: The Estimation of a Project's Cost of Capital when the Project Risk Is Different from the Risk of the Firm, Including an Application to the Buddy's Restaurants Project.

Ś		HOW TO
Step 2: Estimate the project's aftertax cost of debt: k _D (1 – T _c).	 If the proxies have outstanding bonds that are publicly traded, use equation 10.1 to estimate their cost of debt k_D. 	
		 Otherwise, use the credit spread equation (equation 10.2) or ask the bank.
		 Take the mean of the proxies' cost of debt.
		 Use the marginal corporate tax rate for T_c.

EXHIBIT 10.10c: The Estimation of a Project's Cost of Capital when the Project Risk Is Different from the Risk of the Firm, Including an Application to the Buddy's Restaurants Project.

STE	EPS TO FOLLOW	HOW TO
Step 3:	Estimate the project's cost of equity: <i>k</i> _E .	 Use the capital asset pricing model (equation 10.11). The risk-free rate is the rate on government bonds.
	 The market risk premium is 6.2% (historical average). 	
	 Un-lever the proxies' equity betas using equation 10.7 to get their unlevered asset betas. 	
		 Re-lever the mean of the proxies' asset betas at the project's target debt-to-equity ratio using equation 10.6 to get the project's equity beta.
		 Apply the CAPM to the project's equity beta to

get the project's cost of equity $k_{\rm F}$.

EXHIBIT 10.10d: The Estimation of a Project's Cost of Capital when the Project Risk Is Different from the Risk of the Firm, Including an Application to the Buddy's Restaurants Project.

STEPS TO FOLLOW

HOW TO

Step 4: Calculate the project's weighted average cost of capital (WACC).

WACC =
$$k_D(1 - T_c) \frac{D}{E + D} + k_E \frac{E}{E + D}$$

Three Mistakes To Avoid When Estimating A Project's Cost Of Capital

Mistake #1

- "The project is going to be financed entirely with debt, so its relevant cost of capital is the interest rate on the debt."
- Or, "The project is going to be financed entirely with equity, so its relevant cost of capital is the cost of equity."
 - Wrong because
 - If the project and the firm have the same risk
 - Return expected by investors from the project should be estimated using financing ratios that reflect the firm's target capital structure
 - If the risk of the project is different from that of the firm
 - Then use the financing ratios of the proxy firms

Three Mistakes To Avoid When Estimating A Project's Cost Of Capital

Mistake #2

- Although the project does not have the same risk as the firm, its relevant cost of capital should be equal to the firm's WACC."
 - Wrong because it is not the firm's cost of capital that determines a project's cost of capital
 - It is the other way around

EXHIBIT 10.11: Company-Wide Cost of Capital and Projects' Expected Rates of Return.

Three Mistakes To Avoid When Estimating A Project's Cost Of Capital

Mistake #3

- "When a project's risk is different from the risk of the firm, the project's cost of capital should be lowered to account for the risk reduction that diversification brings to the firm."
 - Wrong because investors can themselves achieve the same risk diversification at practically no cost—without the help of the project's managers

Avoiding mistakes

- Mistakes made when estimating a project's cost of capital can lead to a distorted allocation of capital among projects
 - Can eventually lead to value destruction
- Our advice: When in doubt, remember that a project's cost of capital is determined by financial markets, not by managers